Canadian Underground Infrastructure Logo

Breaking through the Bosphorus

Specially-adapted tunnel boring machine completes demanding tunnelling project

The technically extremely complex challenges make the construction of the 3.34-kilometre-long tube for the Eurasia Tunnel one of the world’s most demanding tunnelling projects.
The technically extremely complex challenges make the construction of the 3.34-kilometre-long tube for the Eurasia Tunnel one of the world’s most demanding tunnelling projects.

Company info

Schlehenweg 2
Schwanau,
DE, 77963

Website:
herrenknecht.com/en/home.html

Read more

The Bosphorus road tunnel project which broke through in August in Istanbul, Turkey is a major achievement on one of the world’s biggest and most challenging tunnel drives. At 13.66 metres diameter and 11 bar of water pressure in fractured rock and soft ground, the 3.34-kilometre-long bore was unprecedented and required skillful engineering and advanced TBM technology.

Making the job more difficult for both tunnellers and the tunnel machine is the combination of challenges. Many tunnels face high water pressure, though not quite so high as this, and many tunnels face blocky, fractured, abrasive and difficult rock. Several have to go through soft ground and some have to make a transition between hard and soft. Some tunnels have very big diameters. For the Bosphorus all these factors came together at once. On top of that, there was also a high seismic risk from the major Marmara fault line just to the south of Istanbul. Special yielding joint technology was applied at two critical points, with the joint segments made and tested in Japan.

The tunnel runs across the narrow Bosphorus seaway connecting the Black Sea to the small Sea of Marmara and the Mediterranean beyond it. The sea channel famously separates not just two sides of the city but two continents, Europe and Asia. The new route sits at the south-east end of the Bosphorus, on the populous urban coast of the Marmara sea, running between the historic Golden Horn peninsula on the west with its Blue Mosque and Hagia Sophia, and the port districts on the Asian side. There has been no direct connection between these important areas.

Currently ferries link the bustling conurbation at various points and there are two major road bridges at the mid-point of the Bosphorus. But both are clogged with traffic at rush hours. Now the new tunnel section, and the overall 14.6-kilometre long highway it is part of, will cut journey times from 100 minutes to 15. The link will also relieve traffic loads on the bridges but without intruding on the famous skyline. But to do it, the alignment must go 106 metres deep under the Bosphorus.

Meaning “throat” in Turkish, the channel was carved through the Trakya Formation, a complex of sandstones and mudstones, by sudden massive flows of water between the seas in geological times. In the glacial period it was partly filled with soft alluvial deposits but the water is still 62 metres deep where the tunnel crosses, with bedrock 40 metres below that. The tunnel goes through the permeable sediment and highly fractured rock, each saturated with the seawater above.

New type of cutterhead

“That meant using a TBM that could handle hard and soft ground and at high pressure,” says Gert Wittneben, TBM construction manager for the YMSK joint venture building the tunnel. YMSK JV is a combination of Turkish contractor Yapı Merkezi Construction as leader and Korean firm SK Engineering & Construction as partner. “It had to be a slurry machine, a Mixshield type.”

The impermeable reinforced concrete segments used in the subsea tunnel have an average compressive strength of 70 megapascals and were produced by the Yapı Merkezi Prefabrication division.

The TBM from Herrenknecht has a face provided with both hard rock discs cutters, mounted on six radial arms, scrapers and buckets and openings between for the slurry support and spoil removal. The chosen TBM was designed with some special features to tackle the conditions. Firstly of course it had to resist the very high pressure, up to possibly 12 bar, in itself a challenge. Then as far as possible it had to allow working conditions inside at atmospheric pressure and a key element in this was to be able to change disc cutters.

The TBM has a face provided with both hard rock discs cutters, mounted on six radial arms, scrapers and buckets and openings between for the slurry support and spoil removal. The TBM was designed to resist the very high pressure, up to possibly 12 bar, in itself a challenge.

“We have used a sophisticated system to allow the disk changing directly from within the cutter arms at atmospheric pressure,” says Werner Burger, head of engineering at Herrenknecht. He says the design approach was first used on a machine in Hamburg but not at this size and depth. Discs, which are 19-inch double edge types, are removed from the face along with their housing and a new cutter-housing unit is installed, the operation taking about two to three hours. Overall, approximately 500 excavation tools have been changed during the complete drive – all under atmospheric pressure from within the cutter arms.

Inside the control cabin of the Herrenknecht TBM, a special monitoring system from VMT was used for the first time. It monitors the performance of the disc cutter system, measuring key values like rotation and temperature. Results are displayed on a screen where sound units are shown in green and abnormal discs show a yellow or red alert.

“Normally a disc should be revolving and if it slows or stops that is an indication of wear or even a possible breakage,” says Wittneben. “It is important to know if a unit is jammed or broken, particularly to prevent metal debris getting into the rest of the face or spoil crusher system, where secondary damage can occur which is difficult to cope with.”

He says that after a few teething problems the system has proved excellent and beneficial for the disc cutter performance. It works in conjunction with a wear detector pin system, which is a hollow projection alongside the disc with pressurized hydraulic fluid inside. If the disc wears too far the top of the pin is worn off and fluid released which a pressure detector picks up, again alerting the operator.

From the launch shaft on the Asian side, the Eurasia Tunnel runs beneath the Bosphorus towards Europe – at a depth of up to 106 metres below sea level. Inclinations of up to 5 percent were overcome.

Accessible cutting wheel

To change the heavy disc cutters and housing units, weighing up to a tonne, the TBM is fitted with an internal railway with a carrying trolley and lifting equipment. The same rail is also used to transport a diving pressure transfer chamber in case of interventions needed into the pressure chamber behind the TBM cutting wheel. The pressure compartment fits onto a special airlock at the top of the bulkhead, lifted up by a scissor platform at the end of the rail. Divers use the chamber to return to surface and enter a decompression unit where they have to stay up to three weeks after a dive. “The TBM bulkhead is also provided with a central lock to allow access into the central bearing area,” says Burger. Both locks are part of a specification on the machine allowing for hyperbaric interventions, a feature to allow for possible maintenance or repair needs which would otherwise have been extremely difficult if not impossible. Access from outside the machine, if it had stopped, would have been impossible at 106-metre water head. Several uses have been made of an onsite diving team.

Other special features on the machine include extra “chisel” grill bars across the slurry openings in the face. These allow for the heavily fractured quality of the Trakya Formation which meant blocks coming away from the face. They were kept in front of the cutting wheel until TBM action reduced their size enough to allow through the spoil grill into the jaw crusher and then slurry line to surface. 

The cutting wheel of the 13.66-metre-diameter TBM briefly after the breakthrough in the target shaft on the European side of the Bosphorus. The different changeable excavation tools like disc cutters and scrapers.

More from Tunneling

Robbins EPB caps 62 km of tunneling with final breakthrough at Emisor Oriente

On May 23, 2019, a celebration was in order: The last of six 8.93 m (29.3 ft) diameter EPBs had completed excavation at Lot 4 of Mexico City's Tύnel Emisor Oriente (TEO), a feat marking the completion of ten years and 62.1 km (38.6 mi) of tunneling. "We are proud of having successfully finished the excavation, despite all the adversities we faced, such as large inflows of water, hydraulic loads and constant changes in geology. We solved these by adapting the excavation mode according to each type of geology found," said Hector Arturo Carrillo, Machinery Manager for Lot 4 contractor Carso Infraestructura y Construcción (CARSO).  

Robbins TBM rises to geological challenges in France

In April 2019, a Robbins 3.5-m (11.5-foot) diameter Main Beam TBM broke through into open space, completing its 2.8 km (1.7 mi) long tunnel. It was not the first time the machine had encountered open space: twice during tunnelling, the machine hit uncharted caverns, the largest of which measured a staggering 8,000 cubic metres (283,000 cubic feet) in size.  

Crossover TBM crosses 48 fault zones in Turkey

Excavation of Turkey's longest water tunnel came to an end on December 18, 2018. To get there, a 5.56 m (18.2 ft) diameter Robbins Crossover (XRE) TBM and the contractor JV of Kolin/Limak had to overcome dozens of major fault zones and water pressures up to 26 bar. The completed national priority water line is set to go into operation in March 2019.

Robbins TBM breaks through on long, tough Atlanta bore

On October 4, 2018, onlookers watched as a 3.8 m (12.5 ft) diameter Robbins Main Beam TBM completed its epic journey. The TBM, christened "Driller Mike", after local rapper and activist "Killer Mike", overcame extremely hard rock conditions along a curving 8.0 km (5.0 mi) tunnel to bolster the city of Atlanta, Georgia, USA's water supply. 

Robbins TBM breaks through on Ohio Canal project

On August 29, 2018, a 9.26 m (30.4 ft) diameter Robbins Crossover (XRE) TBM crossed the finish line at the Akron Ohio Canal Interceptor Tunnel (OCIT). A press day followed on September 5, where companies and members of the media were invited to view the giant machine. The machine — dubbed "Rosie" in honor of Rosie the Riveter, an icon representing American women who worked in factories and shipyards during World War II — overcame tough ground conditions during the bore.

Robbins Double Shield tunnel boring machine is conquering the Himalayas

Nepal's first tunnel boring machine, a 5.06 m (16.6 ft) diameter Robbins Double Shield, is living up to the nation's high expectations. The TBM, supplied in summer 2017 for the Bheri Babai Diversion Multipurpose Project (BBDMP), recently bored over 1,000 m (3,280 feet) in one month and has been averaging an impressive 800 m (2,630 feet) per month. The project is owned by the Government of Nepal's Department of Irrigation (DOI) and operated by contractor China Overseas Engineering Group Co. Ltd. Nepal Branch (COVEC Nepal).

Veteran Robbins TBM plays a Main Role in Ending Residential Flooding

In Chicago, Illinois, USA Kenny Construction is nearing completion on the Albany Park Stormwater Diversion Tunnel. The project, owned by the Chicago Department of Transportation, will divert water from the Albany Park neighborhood, which has long been plagued by flooding. Plans for the tunnel began in 2013, after flood conditions became so severe that residents had to be evacuated from the area by boat. The tunnel is expected to be functional by April 2018.

Herrenknecht TBMs push through hard Norwegian rock on tunnel projects

Whether it's a world record with the longest railway tunnel on earth at the Brenner or the epoch-making Gotthard project, the business of mechanized tunnel boring through hard rock is currently reaching new heights in Europe. Now Scandinavia is discovering the advantages of mechanized tunnelling. With the breakthrough at the Ulriken Tunnel, the first major tunnel project in Norway using a Herrenknecht Gripper TBM has been successfully completed.

Large underground projects benefit from subsurface utility engineering

Large underground projects such as rapid transit tunnels are today being built through highly congested areas, both above and below ground. One of the most complex challenges involves accurately locating existing utilities during the design phase and discerning whether the utility can be accommodated or if it must be relocated. 

Final double breakthrough at the Emscher sewer

With the breakthrough of the last two tunnel boring machines into the target pit in Oberhausen-Biefang on June 12, 2017 the tunnel and pipe jacking work for the Emscher sewer has been completed. Over a period of 25 years numerous Herrenknecht tunnelling machines and a wide range of additional equipment were successfully used in the Europe-wide unique environmental and sewage project of Emschergenossenschaft.

free-paper-airplane

Get our newsletter

Learn more

Herrenknecht tunnel borers continue success story in L.A.

Los Angeles is a vibrant center of international film art and innovation - not just on the surface. The area below ground is the scene of state-of-the-art engineering achievements. German high-tech machines from Herrenknecht are creating underground arteries for the American city. Tunnel boring machine (TBM) , Harriet successfully completed her drive for the Crenshaw/LAX Transit Project in April 2017. Angeli just finished digging the first of two tunnels for the Regional Connector Transit Corridor on July 18th. From spring 2018 onward the tunnel boring stars will have additional company: for each of the "Purple Line Extension Sections 1 + 2", two more Herrenknecht TBMs will be working their way through the difficult ground. All three projects are part of the strategic subway extension in L.A. to relieve the traffic above ground.

Robbins TBM Takes on Eighth Bore for Galerie des Janots Project

A Robbins TBM, recently christened “Augustine”, is being commissioned to undertake its eighth bore after being launched by contractor Eiffage Civil Engineering on March 3. The TBM, which was extensively modernized and upgraded during the rebuild for the Galerie des Janots project in La Ciotat, France, has previously completed seven other successful projects across Europe and Hong Kong. This time, it will bore the Janots gallery to improve access to water in the communities east of the Aix-Marseille-Provence metropolis (Cassis, Roquefort-la-Bédoule, La Ciotat and Ceyreste). "It’s a single machine 3.5 meters (11.5 ft) in diameter, 250 metric tons (275 US tons), and 135 meters (443 ft) long, that will work 24 hours a day for almost 10 months during this operation,” says Marc Dhiersat, Project Director of Galerie des Janots for Eiffage.

McLaughlin launches new 60-inch auger boring machine

McLaughlin launched its biggest machine to date at the CONEXPO-CON/AGG 2017 trade show. The McL-60 Workhorse is a 60-inch (152.4-cm) auger boring machine designed with operator convenience in mind. The low-profile engine design, remote control operation and Rabbit Travel help water, sewer and pipeline contractors install large-diameter casings at a lower cost than directional drilling

McLaughlin debuts first-of-its-kind Steerable Rock System for auger boring

McLaughlin introduced the groundbreaking Steerable Rock System (SRS) at the CONEXPO/CON-AGG 2017 trade show. The SRS is the auger boring market’s first steerable head designed to navigate not only solid rock but difficult fractured rock conditions as well. Engineered to operate in rock up to 25,000 psi, the SRS allows operators to maneuver auger boring machines even in the toughest ground conditions for an on-grade bore.

Robbins Double Shield digs the Andes

Chile’s Los Condores HEPP is a high cover, hard rock challenge, with 500 m (1,640 ft) of rock above the tunnel and a high-altitude jobsite 2,500 m (8,200 ft) above sea level. As of January 2017, a 4.56 m (15.0 ft) Robbins Double Shield TBM had completed boring its 900 m (2,950 ft) long access tunnel and was well on the way to boring the first section of headrace tunnel.  The machine embarked on its journey on May 27, 2016, and has since excavated over 1,300 m (4,270 ft) of tunnel in total.

Introducing the Guide Rod Swivel (GRS-50) family of cutter heads

To achieve guided boring steel casing installations in deep, densely compacted ground and soft rock, Akkerman announces the newest solution in the Guided Boring Machine (GBM) equipment line, the Guide Rod Swivel (GRS-50) family of cutter heads with a universal bearing swivel. The robust GRS-50 family contains four sizes of high thrust bearing upsizing tools able to withstand up to fifty tons of continuous thrust loads on guided boring, guided auger boring, and soft rock pilot tube projects.

Robbins' TBM dubbed “Driller Mike” digs Atlanta

After an Onsite First Time Assembly (OFTA) lasting just 2.5 months, Atlanta Georgia, USA’s newest TBM, dubbed “Driller Mike”, made its initial startup on October 13, 2016 and ramped up to full production two weeks later. Atlanta’s Mayor Kasim Reed and city officials gathered with local and national media to celebrate the occasion. The 3.8 m (12.5 ft) diameter Robbins Main Beam TBM is now boring the 8.0 km (5.0 mi) Bellwood Tunnel after being walked forward 100 ft into a starter tunnel. The Bellwood Tunnel path will travel from an inactive quarry and run below a water treatment plant and reservoir before ending next to the Chattahoochee River.

Hard-working Robbins TBM boring 28 km of tunnels below Indianapolis

On Tuesday, September 6, 2016, one of the longest-running Robbins TBMs embarked on its most extensive project yet. The 6.2 m (20.2 ft) Main Beam machine, owned by the Shea-Kiewit (S-K) JV, is boring the 8.5 km (5.3 mi) long White River Tunnel as the first in the next phase of the DigIndy wastewater tunnels below Indianapolis, Indiana, USA. In addition to that work, the machine will bore the Lower Pogues Run, Fall Creek, and Pleasant Run Tunnels—a scope of work totaling about 28 km (17 mi) through limestone and dolomite rock.

Extend your mud recycler’s lifespan

Equipment maintenance is a topic that no contractor particularly wants to address, but in light of the ever growing need to maximize production and cut down time it is extremely important. Your equipment will only continue to work properly if you take the time to perform simple routine maintenance.

Robbins achieves another breakthrough in Bangalore

On June 8, 2016, one of two 6.4 m (21.0 ft) diameter mixed-face EPB machines broke through at Namma Metro. After being launched in March 2015, the TBM named Kaveri made its way through its difficult 750 meter (2,460 ft.) drive from Chickpet to Majestic. Sister machine Krishna, launched in December 2015 is not far behind, and is expected to break through in approximately two months.

free-magazine-subscription

Get Our Magazine

Paper or Digital delivered monthly to you

Subscribe or Renew Learn more

How hyperbaric tunnelling support keeps repair technicians healthy

Divers must constantly keep track of their depth and dive time in order to prevent decompression sickness, otherwise known as the bends. Because divers are breathing air while they are pressurized by the surrounding water, the diver’s tissues absorb gases (mostly nitrogen) from the breathing air. The deeper the diver goes and the longer he stays there, the more gas his body absorbs. When the diver returns to the surface and the pressure is relieved, these accumulated gases start to leave the body. If the pressure is relieved too quickly, bubbles can form. These bubbles in the diver’s tissues are the cause of decompression sickness. Nitrogen bubbles can cause joint pain and in extreme cases, impaired brain, spinal cord and lungs function.

CRS Tunnelling takes on unique project at Pearson Airport

Most tunnelling contractors don’t have to worry about planes landing on the ground above them. But that – and much more – made a recent sewer-twinning project carried out by Oakville, Ontario-based CRS Tunnelling much different from your average construction job.

Two North American milestones for Ward & Burke

It’s not often that a company can lay claim to two major accomplishments within the space of just a few months but that is what happened last summer with two significant microtunnelling projects completed in Calgary and Toronto by Ward & Burke Microtunnelling Ltd.

Rosemont Double Shield on a roll for Robbins

In a large November 2015 ceremony attended by the mayor of Montreal,, and representatives from local media outlets, the Rosemont Reservoir tunnel construction came to a close. The long-awaited project, more than 38 years in the making, gave cause for celebration as crew members crowded around the cutterhead of the 3.0 m (9.8 ft) diameter Double Shield TBM that had emerged into an exit shaft.

Seattle TBM starts tunnelling again

Bertha, the SR 99 tunnelling machine, is now tunnelling in Seattle soil after breaking through the access pit wall on January 6th.  After being out of commission for about two years, Seattle Tunnel Partners (STP) has mined 73 feet and installed 12 concrete tunnel rings since Bertha first moved forward in the pit on Dec. 22. 

Bertha tunnels into next phase of testing

The State Route 99 tunneling machine entered its next phase of testing early Tuesday, Dec. 22, near Pier 48, moving forward and installing a tunnel ring at the bottom of the 120-foot-deep pit crews built to access and repair the machine. Seattle Tunnel Partners, the Washington State Department of Transportation's design-build contractor for the tunnel project, plans to tunnel a short distance further in the access pit tunnel before giving crews a break for the holidays.

Røssåga Main Beam sets Norwegian milestone

A crowd of crew members gathered to celebrate in front of a newly-emerged hard rock TBM on December 10 in northern Norway, but their celebration was about more than just a breakthrough. The 7.2 m (23.6 ft) diameter Robbins Main Beam machine had traversed hard rock, water inflows, and more to become the first TBM used in the country since over 20 years. 

free-paper-airplane

Get our newsletter

Learn more

Robotic inspection goes 1/2-K deep

In June, ASI Marine (ASI) personnel conducted a remotely operated vehicle (ROV) underwater inspection of the Cheves Hydropower Tunnel in Peru and ended up breaking the ASI company record for the deepest flooded tunnel inspection at 570 metres water depth. The Cheves Hydropower Project is being developed by Empresa de Generacion Electrica Cheves S.A., a wholly-owned subsidiary of Statkraft, a Norwegian electricity company.

Robbins rolls out remote-controlled SBU, a tunnelling industry first

In Bend, Oregon, local contractor Stadeli Boring & Tunneling had a unique set of circumstances for a new gravity sewer interceptor. “We had a contract with general contractor Taylor NW to furnish and install 323 feet (98 m) of 36-inch (900 mm) steel casing under railroad tracks. Line and grade were very crucial, and the tolerances were very close. We had to be right on,” said Larry Stadeli, president and owner of Stadeli Boring & Tunneling. In addition to those parameters, the job was also in solid rock.

Powering Up

How much power does it take to run a city? In a major urban centre like Toronto, it turns out, quite a lot. With a metropolitan-area population that recently cracked six million, Canada’s largest city is facing ever-increasing demands for base and peak loading. That is the case especially in the downtown core, where dense residential and commercial development has stretched power resources to the point where the need to relieve capacity constraints necessitated an additional transformer station in Toronto’s crowded south core central business district.

Variable Density Technology Game Changer for Kuala Lumpur

Kuala Lumpur's karst soil riddled with fissures and crevices is a real challenge for tunnel builders. Herrenknecht, developed for Klang Valley MRT Project in Malaysia´s capital in collaboration with MMC-Gamuda Joint Venture a new type of machine. The Variable Density tunnel boring machine can be operated in four different tunnelling modes and thus perfectly adapted to the different conditions. After nearly two years of tunnelling, in mid-April 9.5 kilometers of tunnel were completed and the new technology had proven itself. A major breakthrough for Kuala Lumpur’s Metro and for mechanized tunnelling in difficult soft ground.

New Crossover Series of TBMS

Robbins announced its Crossover Series of TBMs, a line of field-tested, rugged Dual Mode-type machines. Crossover TBMs feature aspects of two TBM types, and are ideal for mixed ground conditions that might otherwise require multiple tunnelling machines. The XRE (standing for Crossover Rock /EPB) is the most common type of hybrid machine, and features characteristics of Single Shield Hard Rock machines and EPBs for efficient excavation in mixed soils with rock.

Large-Scale Projects In Small Diameters Win GSTT Award 2015.

Two projects in which microtunnelling machines from Herrenknecht are driving new sewers have been awarded the "GSTT Award 2015" by the German Society for Trenchless Technology e.V. (GSTT). The special award "International Project" was given to the National Water Company of Saudi Arabia. At their unusual construction site in Mecca two Herrenknecht EPB shields with an individual remote monitoring system are in use. The Emschergenossenschaft received the GSTT Award “Gold” for a construction of a section between Dortmund and Bottrop as a part of the Emscher renaturation. Since 2013 several Herrenknecht utility machines have been driving a new sewer system there.

5200 Pump Unit for the Akkerman Tunnel Boring System

Akkerman has introduce the 5200 Pump Unit, the most essential element of the Tunnel Boring System. This flagship product has been improved in several essential areas while retaining the best qualities of its predecessors, to achieve optimal pipe jacking performance.

World Record Set Las Vegas Tunnelling Project Withstands Highest Pressurized Conditions

Las Vegas, the glittering city of luck with its fascinating fountains, draws 90 percent of its water from Lake Mead. The largest reservoir in the United States is fed by the Colorado River. The areas around Las Vegas, however, are taking more from the lake than flows into it as snow melt and rain water from the Rocky Mountains. During the 14 years of drought, the water level has dropped by 35 metres. The two existing water intakes for the Las Vegas Valley are in danger of running dry, and Intake No.1 could be at risk next year. It is now only 24 feet (7 metres) below the lake level.

free-magazine-subscription

Get Our Magazine

Paper or Digital delivered monthly to you

Subscribe or Renew Learn more